
LLNL-CONF-666558

Predicting Optimal Power
Allocation for CPU and DRAM
Domains

A. Tiwari, M. Schulz, L. Carrington

January 26, 2015

The 16th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing
Hyderabad, India
May 29, 2015 through May 29, 2015



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Predicting Optimal Power Allocation for CPU and
DRAM Domains

Ananta Tiwari†, Martin Schulz‡, Laura Carrington†

†Performance Modeling and Characterization Laboratory
San Diego Supercomputer Center

San Diego, California, USA
{tiwari, lcarring}@sdsc.edu

‡Lawrence Livermore National Laboratory (LLNL)
Livermore, CA

schulzm@llnl.gov

Abstract—Constraints imposed by power delivery and
costs will be key design impediments to the develop-
ment of next generation High-Performance Computing
(HPC) systems. To remedy these impediments, solutions
that impose power bounds (or caps) on over-provisioned
computing systems to remain within the physical (and
financial) power limits have been proposed. Uninformed
power capping can significantly impact performance and
its success depends largely on how intelligently a given
power budget is allocated across various subsystems of
the computing nodes. Since different computations put
vastly different demands on various system components,
those variations in the demands must be taken into
consideration while making power allocation decisions to
lessen performance degradation. Given a target power
bound, a model-based methodology presented in this paper,
which takes computation-specific properties into account,
guides power allocations for CPU and DRAM domains to
maximize performance. Our methodology is accurate and
can predict the performance impacts of the power capping
allocation schemes for different types of computations from
real applications with absolute mean error of less than 6%.

I. INTRODUCTION

Utility costs and constraints on power delivery are
limiting the expansion of large scale High-Performance
Computing (HPC) systems. Future HPC systems will
most likely be over-provisioned and power constrained to
be operated within strict power limits [9], [17], [22]; i.e.,
not all components of the system can run at maximum
power draw and therefore maximum performance. For
these classes of systems, the objective of performance
optimization, which has traditionally been to minimize
time-to-solution, will morph into a more complicated

objective – maximizing performance under a power
budget, where power budget for a given system will
depend on the physical (in terms of power delivery and
cooling infrastructure) and financial considerations.

To operate power limited systems efficiently, deci-
sions will have to be made to allocate the available
power budget to different subcomponents (CPU, un-
core and memory) within a compute node1. Some of
these allocation decisions could lead to operating system
components at reduced power levels, thereby degrading
their performance. In order to lessen the impact on
application execution time, power allocation decisions
will have to be application-aware; i.e., power should
be capped on component(s) that have the least impact
on a given application’s execution time. For example,
power capping CPU subsystem during a computational
phase that is memory bound will have less impact on
application performance than power capping DRAM
subsystem during the same computational phase.

Determining the extent to which different types of
computations are sensitive to reduced power caps on
CPU and DRAM subsystems is, therefore, the prereq-
uisite in the development of optimal power capping
strategies. Towards that end, this paper presents a sys-
tematic computation-aware methodology to understand
and predict how sensitive a given computation is to
different levels of power capping on CPU and DRAM
subsystems in order to determine the optimal power

1We note that power limits could also be placed on other compo-
nents such as Network and I/O. This work focuses at intra-compute-
node power allocations to processor and DRAM subsystems.



distribution to components under a given power budget.
In addition to different power capping levels imposed
on CPU and DRAM, our predictive machine learning
models utilize the application’s computational properties
as predictors – for example, arithmetic intensity, memory
access patterns, cache hit rates and data dependencies.
The models can be used to explore the performance sen-
sitivity of different computations when different power
caps are imposed simultaneously on CPU and DRAM
domains. The models can also be used to select the best
implementation of a computation, from among a set of
source code variants that use different code optimiza-
tions, given a stipulated power budget.

In particular, this paper makes the following contribu-
tions:

1) We present models that are highly accurate in
predicting the performance sensitivity of various
HPC computations across a range of simultaneous
power caps on CPU and DRAM domains.

2) We illustrate the use of computational character-
ization in developing accurate predictive models
for performance degradations introduced by power
limits and discuss the relative importance of differ-
ent application properties in driving the observed
degradations.

3) We demonstrate the effectiveness of our models
in predicting the sensitivity to power capping of
real applications and in choosing the performance
optimal implementation variants (within an auto-
tuning workflow) for a given power bound.

This paper is organized as follows. The next section
describes related research, which is followed by the
presentation of a study that motivates using a method-
ology that is based on application-specific attributes for
predicting the optimal power capping levels for CPU and
DRAM (Section III). The same section also describes
the tools that we rely on to gather application character-
izations and the modeling technique that we use in this
paper. Section IV presents modeling results along with
model evaluation results on mini applications. Finally,
Section V provides concluding remarks.

II. RELATED WORK

Power capping has recently received its fair share of
attention from researchers in power-aware HPC. Roun-
tree et al. [20] investigate the performance impact of
power capping the Package (PKG) domain but not the
DRAM domain for a SandyBridge system. Fukazawa
et al. [12] investigate the performance variation seen

in different sections of a large scale Magneto hydro-
dynamic (MHD) simulation code subjected to power
capping. Patki et al. [17] look at how applications
behave under RAPL power capping on the PKG domain
and identify how application characteristics affect the
performance optimal configuration (e.g., number nodes,
cores per node, and power limit per node) under a
power limit. Sarood et al. [22] utilize application profiles
and a simple interpolation scheme to optimize perfor-
mance of an application under a power budget by using
RAPL to distribute the power between the CPU and
memory and adding additional nodes. The interpolation
scheme requires measuring the application at different
power distributions under strong scaling to develop their
application-specific models. Our work is distinct in that
our machine-learning models are trained using computa-
tional characteristics from a set of benchmarks to predict
the effect of CPU and DRAM power capping on any
given application at fine granularities.

Etinski et al. [10] have worked on power reduction via
DVFS to schedule jobs with a given power budget. Li et
al. [15] also looked at scheduling within a power budget
and utilized IPC models to determine the most energy ef-
ficient frequency and concurrency to be used in a hybrid
programmed application. Goel et al. [13] use on-chip
temperature measurements along with hardware counters
to model power draw for the core to drive power-aware
scheduling and frequency scaling to compute within a
power budget. Our work differs in that we do not use
hardware counters and our models enable “shifting” of
power between the components to compute within a
power limit. Similar to this work, power models for
CPU and DRAM were developed to investigate energy
efficient code variants for computational kernels [25].
The models in that work were application specific where
as in this work the models are general and based on com-
putational characteristics. In our earlier work [24], we
presented a modeling framework that could be used to
predict how different computations (and phases) within
an application would behave under a given reduced per
core memory bandwidth.

III. MOTIVATION AND METHODOLOGY

This section describes the motivation for the research
presented in this paper and our methodology to predict
DRAM and CPU power capping settings that maximize
performance under a given power budget.



A. Motivation

The key insight, on which our methodology is based,
is that different computations and even different imple-
mentations of the same computation will have different
performance behavior in power-capped environments.
We illustrate this insight with simple examples presented
in Figure 1 and Figure 2. We took a set of diverse HPC
computations (more details on what these computations
consist of appear in Section IV) and ran them on our ex-
perimental testbed, which is a dual-socket SandyBridge-
based system (also described in Section IV), with no
power limits (base case). For each of the computations,
we then ran two sets of experiments – one by imposing
power limits on the DRAM domain and the other by
imposing limits in the CPU domain. The limits for each
domain are chosen based on the power draw that a given
computation draws when there is no power limit imposed
on the system. Figure 1 shows the results for the DRAM
domain and Figure 2 shows the results for the CPU
domain. The x-axis shows the power capping levels in
terms of the proportion of the power drawn in the base
case; e.g., a level of 0.62 indicates a power limit of
62% of the power drawn in the base case (i.e., a 38%
reduction in power). Thus, the closer a point is to the y-
axis the larger the power reduction. The y-axis shows the
performance degradation with respect to the base case,
which ranges from around 1.17X-5X.

The impact that reducing power cap in the DRAM
domain has on performance is fairly extensive. If we
consider a power level of 0.62 on the DRAM domain
(see Figure 1), the performance degradations can be in
the range of 2.5X to 5X . While the range is not as
extensive in the CPU power reduction, the range is still
very significant. Where in the performance degradation
range a computation falls really depends on its char-
acteristics and determining what characteristics are key
indicators of this degradation are requirements for any
methodology that aims to maximize performance under
given power budget. The next section describes the tools
that we use to extract these key performance metrics of
the computations within HPC applications.

B. Computation Characterization

In order to develop models that capture a computa-
tion’s sensitivity to different power caps placed on the
CPU and DRAM domains, we need to first capture low-
level details of how an application interacts with and
exercises the underlying hardware subcomponents. To
do that, we leverage a suite of application analysis tools

0.62 0.64 0.66 0.7 0.72

2
3

4
5

DRAM Power Capping

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n 

w
rt

 to
 N

o 
P

ow
er

−
C

ap
pi

ng

Fig. 1. The range of slowdowns for different dram power reductions,
while imposing no power limit on the CPU domain. X-axis shows
the power capping levels, where 0.62 denotes a 38% reduction in
power.

●

●

●

●

●
●

●

●

0.62 0.64 0.66 0.7 0.72 0.74

1.
1

1.
2

1.
3

1.
4

CPU Power Capping

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n 

w
rt

 to
 N

o 
P

ow
er

−
C

ap
pi

ng

Fig. 2. The range of slowdowns for different CPU power reductions,
while imposing no power cap on the DRAM domain. X-axis shows
the power capping levels, where 0.62 denotes a 38% reduction in
power.

developed on top of PEBIL [14], which is a binary instru-
mentation toolkit for x86/Linux. PEBIL takes as input an
application binary; it disassembles the binary, analyzes
it, and can insert instrumentation(s). Tools written on top



of PEBIL can perform static and dynamic analysis on the
application binary.

The static analysis tool written on top of PEBIL pro-
duces information about the approximate structure of the
program (e.g., functions and loops) and the operations
that occur within those structures. The tool also records
type and size of classes of operations (e.g., memory
and floating operations) that are within those control
structures. The static analysis tool records the average
size of memory operands in each block and measures
the number of instructions between register or memory
definitions and their usage (i.e., data dependencies).

To gather detailed information about data movement
within an application, the memory characterization tool,
a dynamic analysis tool written on top of PEBIL, in-
struments every memory access in the application and
pipes the address stream to be processed on-the-fly to
estimate various data motion related metrics (e.g., reuse
distance, working set sizes of different loops and cache
hit rates). Another dynamic analysis tool keeps visit
count information for the application’s control units (e.g.,
basic block visit counts). Visit count information when
combined with the static instruction mix information
gives detailed information on the instruction make-up
of the application.

Information collected by static and dynamic tools can
be combined to identify computational phases within
large applications [26] and construct what we refer to as
computation signature for each of the identified phases.
Computation signature consist of the operations required
by the application in the form of instruction mix and
counts, data locality properties, metrics that capture the
application’s interaction with the memory subsystem
such as cache hit rates, load and store operations, etc.

C. Modeling: Problem Formulation and Technique

As shown in Equation 1, our goal is to develop a func-
tion f , whose inputs are a set of hardware parameters
(power caps) and application characterization metrics
x1 · · · xn and whose output y is some measure of the
effect on performance on the computation.

y = f(x1 · · · xn) (1)

In this work, we use Cubist [21], which is a rule-based
machine learning technique, to estimate y in Equation 1.
A Cubist model consists of a tree of linear regression
models; predictions are based on the linear model found
at the terminal/leaf node of the tree. The path to the leaf
or the selection of the terminal node is based on the rules

at intermediate nodes that are also based on linear mod-
els [18]. Unlike other forms of tree based methods, such
as gradient boosting, Cubist models are easy to interpret.
Cubist models also have the capability to encapsulate
complex non-linear relationships between predictor (or
input) variables. Intermediate rules, for example, could
identify and separate differences in performance differ-
ences brought about by power capping for working set
sizes that cross cache-hierarchy boundaries (e.g., L2 vs.
L3 resident working set sizes).

To avoid over-fitting, we employ two techniques. First,
we divide the empirical samples into non-overlapping
training and test sets. The model is trained on the
training subset and validated on the test set. Second,
we use 10-fold cross-validation to produce the models.
In k-fold cross-validation (in our case, k = 10), the
training dataset is randomly partitioned into k subsets
of approximately equal size. k different models are then
constructed, each using (k − 1) of the k partitions as
training input so that 1 of the k sets can be used for
model validation. Each of the k models is then validated
against the validation set and the model that yields the
minimum error is selected.

IV. RESULTS

This section starts by describing the experimental
system that we use to collect our training data. We then
describe a set of benchmarks that we use to gather train-
ing and test data, which is followed by the discussion of
the accuracy of trained models on test dataset as well as
on mini applications.

A. Experimental testbed

Our test system consists of a dual-socket server with
two 8-core 2.9GHz Intel Xeon E5-2690 (SandyBridge)
processors and 64GB of DDR3 memory. Simultaneous
Multithreading (SMT) and Turbo-boost are disabled on
the system.

The RAPL (Running Average Power Limit) [8] in-
terface available on recent Intel2 processors enables the
collection of (modeled) power measurements for CPU
and DRAM subsystems (RAPL documentation refers to
these subsystems as “domains”). RAPL also allows users
to set power limits on these domains and the underlying
hardware infrastructure enforces these power limits. On
our test Sandybridge-based system, RAPL exposes four

2While our focus is on using Intel processors, other chip manu-
facturers have also enabled power capping in their processors (e.g.
AMD [3] and IBM [6], [5]). The methodology presented in the paper
should be applicable to those architectures as well.



power planes – Package (PKG), Power Plane 0 (PP0),
Power Plane 1 (PP1) and DRAM. We use Intel’s Power
Governor tool [1] to enforce power caps on the PKG and
DRAM domains. We also rely on the Power Governor
tool for DRAM and CPU power measurements. We
measure 5 power samples every second, which, in our
experience, incurs only negligible overhead.

B. Model Training Computations

To train models that capture how the performance
of various types of computations changes when sub-
jected to different power capping levels on the CPU
and DRAM domains, we utilize a diverse set of com-
putational kernels that are highly prevalent in HPC
applications. The benchmarks, which are partly derived
from PolyBench [19] and SPAPT [4] suites, consist of
kernels derived from different computational domains –
dense linear algebra (e.g., matrix-matrix multiplication
and matrix-vector multiplication), stencil computations,
linear algebra solvers (e.g., LU decomposition), etc.
In addition, to expand and enrich the training space,
for some of the kernels, we generate implementation
variants (code-variants) using two source-to-source com-
piler transformation tools – Orio [16] and CHiLL [7].
Optimizations that we used to generate these variants
include loop unrolling, cache/register tiling and scalar
replacement. Each of these kernels and kernel-variants
is configured to run with multiple working set sizes
and each computation is configured to run for at least
2 seconds. With the computational kernels and kernel
variants configured to run on multiple working set sizes,
we had a total of 538 computations that formed our
empirical dataset.

Each computation in the aforementioned dataset is
timed on the test system under different DRAM and
CPU power caps. We start by running the benchmark
computations with no power bound (base case) and
denote the average power measurements from RAPL
for CPU and DRAM domains as PbCPU and PbDRAM .
For each computation, we then generate random DRAM
power caps that are in [0.7×PbDRAM , PbDRAM ] set (i.e.,
we select random configurations where we reduce the
DRAM power cap by up to 30%.). The same is also done
to generate CPU power cap levels. A simple cartesian
product combines the DRAM and CPU candidate power
caps to form a set of simultaneous DRAM and CPU
power cap configurations. Of those, we then select 18

random configurations3 and run the computation on
those 18 configurations. We execute each of the con-
figurations six times to get six power and performance
measurements; we discard the minimum and maximum
measurements and average the remaining four. Also,
for each computation we generate a characterization
signature using the tools described in Section III-B. After
post-processing, we have a total of 9550 data points in
our empirically collected dataset.

C. Model Formulation, Results and Diagnostics

Equation 2 shows a more specific formulation of
Equation 1. Pd is the performance degradation that power
capping induces. cpu reduction and dram reduction
are CPU and DRAM power bound indicators as percent-
age reductions with respect to power drawn by respective
domains when there are no power caps. pi v[0, 1, 2]
are L1, L2 and L3 hits per instruction, while pi v3m
measures accesses that miss in L3 (and therefore go to
main memory) per instruction. fprat is the floating point
ratio (floating point operations per memory operation)
and bytespermemop is the bytes transferred per memory
access. ins mix consists of instruction mix parameters
– branch ops, load ops, store ops etc. expressed as a
percentage of the total dynamic instructions. idu and
fdu are integer floating point data dependence metrics.

Pd = f(dram reduction, cpu reduction, pi v0m,

pi v1m, pi v2m, pi v3m, fprat, ins mix,

bytespermemop, idu, fdu)
(2)

To generate and evaluate Pd models (see Equation 2),
we first perform a 60%-40% split on our overall em-
pirical data. The first 60% portion is used to train
the model using 10-fold cross-validation. The remaining
40% data is used to test the accuracy of the model. Model
evaluation results are shown in Figure 3. The Figure
shows the modeled versus measured runtime slowdowns
(with respect to no power capping) for both the training
and the test data. For a well-behaved and accurate model,
the points in the graph should be roughly clustered
around the diagonal 45 degree line, which is the case
in Figure 3. The absolute mean error in predicting the
test dataset is less than 2%.

We calculate the relative variable importance for each
of the input predictors in Equation 2 to identify dominant

3We chose to run 18 configurations based on our experience with
the time it takes to generate training set samples. We wanted to
minimize the number of training samples, but at the same time
generate enough points for our model training to succeed.



●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●
●

●

●●
●●

●

●

●

●●●
●

●
●

●●

●
●

●●

●

●

●
●●
●

●
●●

●●●

●
●

●●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●●●

●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●
●

●

●●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●

●
●

●●
●

●

●
●

●

●

●

●●

●

●

●●●● ●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●●

●

●

●
●

●

●

●

●

●
●●●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●
●

●
●

●

●●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●●

●

●●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●●
●

●

●

●

●
●●

●●

●

●●
●●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●
●

●●

●
●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●●

●
●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●
●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●
●

●

●●

●●●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●
●

●
●●●

●

●

●
●

●●●

●●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●●
●

●

●

●●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●●
●

●●
●

●

●
●

●●

●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●●●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

1.0 1.5 2.0 2.5

1.
0

1.
5

2.
0

2.
5

Predicted vs. Actual Slowdowns

Actual Slowdown

P
re

di
ct

ed
 S

lo
w

do
w

n

●

Error = 0 %
Error = 10 %
Error = 20 %
train
test

Fig. 3. Model diagnostics: The figure shows the prediction accuracy
of the models for both the training and test sets formed by splitting
the overall empirical data into 60%-40% parts.

inputs as well as those inputs that have minimal effect
on the performance degradation and could potentially be
dropped from the model. Figure 4 presents the variable
importance. As expected, CPU and DRAM power cap
levels have the most impact, followed by metrics that
quantify computations’ interaction with the memory hi-
erarchy. Finally, instruction mix parameters round out the
top predictors. From among the elements in the compu-
tation signature, the trips to main memory per instruction
(pi v3m) is the most important, which is to be expected
since more trips to main memory would mean more CPU
stalls and therefore less sensitivity to the CPU power
cap reduction (and the reverse phenomenon for DRAM
power cap reduction).

D. Model-based Auto-tuning

One of the use-cases of the models that we have
developed in this work is its easy applicability within
a search-based auto-tuning workflow, where multiple
variants of a given code that use different compiler-
based optimizations are generated and evaluated to find
the one that performs the best [23]. In a dynamic
auto-tuning environment, which has the capability to
respond to the changes in the operating environment,
our models can be used to quickly identify the variant
that performs the best within a power budget. We make
a reasonable assumption that we have access to the
performance of all the variants evaluated during the auto-

Importance

idu

mdu2

pintops

pstores

fdu

ploads

pfpops

pbranchops

bytespermop

pi_v2m

fprat

pi_v1m

pmemops

pi_v0m

pi_v3m

cpu_reduction

dram_reduction

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 4. Model diagnostics: Variable importance plot, which shows
the ranking of the predictors used to train the model.

tuning process in base setting with no power caps. Using
that data and the stipulated power budget, our models can
inform the execution times of the variants on all possible
configurations of simultaneous DRAM and CPU power
caps, thereby making the selection of the best performing
variant possible.

To illustrate, we use the ATAX (matrix transpose and
vector multiplication) kernel. The empirical dataset that
we use to train and test the models consists of 100 ATAX
kernel variants generated using the Orio [16] tool. Based
on the performance at the base settings of no power
capping, we selected the top-10 variants. Each of these
selected variants was then evaluated by imposing 100
randomly selected DRAM and CPU power bounds. The
key question that we want to answer with this set of
experiments is the following – how will reducing the
overall DRAM and CPU power bound affect the choice
of the optimal variant? That is, will the best performing
variant continue to remain the best at a reduced power
cap? If we assume a scenario where there is a need to
reduce the overall power cap by 10%, will it make sense
to run a different variant. Note that the 10% reduction
will be based on the DRAM+CPU power drawn by the
best performing variant at base setting.

In Figure 5 we show the results of this investigation.
The X-axis is total power reduction as a percentage of
the power drawn by best variant (variant v87) at no
power cap; the Y-axis shows the range of execution



●

●●

●

●

5 10 15 20 25 30

3
4

5
6

DRAM+CPU Power Reduction (% wrt to base power draw for fastest variant)

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

v192

v87

v198

v87

v87

v93*

Fig. 5. Model evaluation on additional ATAX variants to show how
our model could be used within the auto-tuning workflow.

times (in seconds) of the selected top-10 variants. At 5%
reduction in power draw, v192 should be selected, which
is indicated in the graph. When there is a star placed
next to the variant, we are indicating that our model did
not agree (i.e., the variant selected using the exec time
predicted by our model did not match the variant selected
using the real execution time and that happens in only
one out of six cases). The answer to the research question
that we posed is that the ranking of variants in terms of
execution time does change at different power caps. The
objective of this exercise was to show that given a set
of power allocation schemes for DRAM and CPU, our
model is able to predict the performance degradation of
any available variant.

E. Model Evaluation on Mini Applications

Finally, we illustrate the model’s capability in not just
kernels, but utilize the models to predict the behavior
of two mini applications in a power capped operat-
ing environments – miniGhost [2] and CoMD [11].
miniGhost is a Finite Difference mini-application which
implements a difference stencil across a homogenous 3D
domain. We consider 1283 and 2563 sized grids for our
evaluations. CoMD is a proxy application for a broad
class of molecular dynamics simulations and provides
implementations for calculating simple Lennard-Jones
(LJ) and Embedded Atom Method (EAM) potentials. We
consider both in our experiments.

Prediction Accuracy on Mini Applications

Absolute Mean Error (%)

C
ou

nt

0 5 10 15

0
5

10
15

Fig. 6. Evaluation of the model on mini applications – miniGhost
and CoMD. More than 86% of the cases have less than 10% error.

Using our application characterization tool-suite, we
isolate the key hotspots in these applications and feed
the characterization to our model to ask for performance
degradation predictions for a set of randomly generated
CPU and DRAM power cap configurations. To evaluate
the model accuracy we measure the real performance
degradations for those configurations by running the
application under given CPU and DRAM power limits.

The predicted degradations and actual degradations are
then compared to validate the model’s prediction accu-
racy. Overall prediction results (histogram) are shown
in Figure 6. The error metric reported here are for ‘out
of sample’ tests, i.e., the characterization signatures for
the application hotspots are not seen during the model
training process and thereby demonstrate the predictive
accuracy of our models on computations in HPC appli-
cations. Overall the models predict the outcome well –
average absolute mean error is 6%. For more than 86%
of the application hotspots, the prediction error is less
than 10%.

V. CONCLUSIONS

Performance implications of power capping are largely
determined by the computational characteristics of an
application, i.e., different computations will have a dif-
ferent performance behavior when run in power-capped
environments. This paper presented a highly accurate
model-based methodology that utilizes application char-
acteristics to inform the selection of performance max-



imizing power cap configurations for the CPU and
DRAM domains.

ACKNOWLEDGEMENTS

This work was supported in part by the DOE Office
of Science, Advanced Scientific Computing Research,
under award number 62855 “Beyond the Standard Model
– Towards an Integrated Modeling Methodology for
the Performance and Power”; PNNL lead institution;
Program Manager Karen Pao. The authors acknowledge
partial support from LLNL under subcontract B600667.
This work was also supported in part by the DoD and
used elements at the Extreme Scale Systems Center,
located at ORNL and funded by the DoD. Partial support
also came from the DOE Office of Science through the
SciDAC award titled SUPER (Institute for Sustained Per-
formance, Energy and Resilience). Part of this work was
performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.

REFERENCES

[1] IntelTMPower Governor. https://software.intel.com/en-us/
articles/intel-power-governor.

[2] Mantevo Project. http://mantevo.org/.
[3] Advanced Mico Devices. Bios and kernel developer’s guide

(bkdg) for amd family 15h models 00h-0fh processors. Jan.
2012.

[4] P. Balaprakash, S. M. Wild, and B. Norris. SPAPT: Search
problems in automatic performance tuning. Procedia Computer
Science, 9:1959–1968, 2012.

[5] B. Behle, N. Bofferding, M. Broyles, C. Eide, M. Floyd,
C. Francois, A. Geissler, M. Hollinger, H.-Y. McCreary, and
C. Rath. Ibm energyscale for power6 processor-based systems.
2009.

[6] M. Broyles, C. Francois, A. Geissler, G. Grout, M. Hollinger,
T. Rosedahl, G. Silva, M. Vanderwiel, J. Van Heuklon, and
B. Veale. Ibm energyscale for power7 processor-based systems.
2010.

[7] C. Chen, J. Chame, and M. W. Hall. CHiLL: A framework for
composing high-level loop transformations. TR 08-897, Univ.
of Southern California, Jun 2008.

[8] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. Rapl: Memory power estimation and capping. In
Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE
International Symposium on, pages 189–194, Aug 2010.

[9] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In
Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, pages 365–376. IEEE, 2011.

[10] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Parallel
job scheduling for power constrained hpc systems. Parallel
Computing, 38(12):615–630, 2012.

[11] ExMatEx. CoMD Proxy Application. http://www.exmatex.org/
comd.html, 2012. Online; accessed 18-January-2015.

[12] K. Fukazawa, M. Ueda, M. Aoyagi, T. Tsuhata, K. Yoshida,
A. Uehara, M. Kuze, Y. Inadomi, and K. Inoue. Power
consumption evaluation of an mhd simulation with cpu power
capping. In Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, pages 612–617,
May 2014.

[13] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria,
and M. Cesati. Portable, scalable, per-core power estimation
for intelligent resource management. In Green Computing
Conference, 2010 International, pages 135–146, Aug 2010.

[14] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely. Pebil:
Efficient static binary instrumentation for linux. In Performance
Analysis of Systems Software (ISPASS), 2010 IEEE Interna-
tional Symposium on, pages 175 –183, march 2010.

[15] D. Li, B. de Supinski, M. Schulz, D. Nikolopoulos, and
K. Cameron. Strategies for energy-efficient resource manage-
ment of hybrid programming models. Parallel and Distributed
Systems, IEEE Transactions on, 24(1):144–157, Jan 2013.

[16] B. Norris, A. Hartono, and W. Gropp. Annotations for produc-
tivity and performance portability. In Petascale Computing:
Algorithms and Applications, Computational Science, pages
443–462. Chapman & Hall / CRC Press, 2007.

[17] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R.
de Supinski. Exploring hardware overprovisioning in power-
constrained, high performance computing. In Proceedings
of the 27th International ACM Conference on International
Conference on Supercomputing, ICS ’13, pages 173–182, New
York, NY, USA, 2013. ACM.

[18] L. Porter, M. A. Laurenzano, A. Tiwari, A. Jundt, W. A. Ward,
Jr., R. Campbell, and L. Carrington. Making the most of smt
in hpc: System- and application-level perspectives. ACM Trans.
Archit. Code Optim., 11(4):59:1–59:26, Jan. 2015.

[19] L.-N. Pouchet. PolyBench: The Polyhedral Benchmark
suite, 2012. http://www.cse.ohio-state.edu/∼pouchet/software/
polybench/.

[20] B. Rountree, D. Ahn, B. de Supinski, D. Lowenthal, and
M. Schulz. Beyond dvfs: A first look at performance under
a hardware-enforced power bound. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International, pages 947–953, May 2012.

[21] RuleQuest Research. Data Mining with Cubist. http://rulequest.
com/cubist-info.html, 2012. Online; accessed 18-January-2015.

[22] O. Sarood, A. Langer, L. Kale, B. Rountree, and B. de Supinski.
Optimizing power allocation to cpu and memory subsystems
in overprovisioned hpc systems. In Cluster Computing (CLUS-
TER), 2013 IEEE International Conference on, pages 1–8, Sept
2013.

[23] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth.
A scalable auto-tuning framework for compiler optimization.
In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–12, May 2009.

[24] A. Tiwari, A. Gamst, M. Laurenzano, M. Schulz, and L. Car-
rington. Modeling the impact of reduced memory bandwidth
on hpc applications. In F. Silva, I. Dutra, and V. Santos Costa,
editors, Euro-Par 2014 Parallel Processing, volume 8632 of
Lecture Notes in Computer Science, pages 63–74. Springer
International Publishing, 2014.

[25] A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely. Mod-
eling power and energy usage of hpc kernels. In Proceedings
of the Eighth Workshop on High-Performance, Power-Aware
Computing 2012, HPPAC ’12, 2012.

[26] A. Tiwari, J. Peraza, M. Laurenzano, L. Carrington, and
A. Snavely. Green queue: Customized large-scale clock fre-



quency scaling. In Proceedings of the Second International
Conference on Cloud and Green Computing, CGC ’12, 2012.


